On Minimal Valid Inequalities for Mixed Integer Conic Programs

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Minimal Valid Inequalities for Mixed Integer Conic Programs

We study mixed integer conic sets involving a general regular (closed, convex, full dimensional, and pointed) cone K such as the nonnegative orthant, the Lorentz cone or the positive semidefinite cone. In a unified framework, we introduce K-minimal inequalities and show that under mild assumptions, these inequalities together with the trivial cone-implied inequalities are sufficient to describe...

متن کامل

Valid inequalities for mixed integer linear programs

This tutorial presents a theory of valid inequalities for mixed integer linear sets. It introduces the necessary tools from polyhedral theory and gives a geometric understanding of several classical families of valid inequalities such as lift-and-project cuts, Gomory mixed integer cuts, mixed integer rounding cuts, split cuts and intersection cuts, and it reveals the relationships between these...

متن کامل

On sublinear inequalities for mixed integer conic programs

This paper studies K-sublinear inequalities, a class of inequalities with strong relations to K-minimal inequalities for disjunctive conic sets. We establish a stronger result on the sufficiency of K-sublinear inequalities. That is, we show that when K is the nonnegative orthant or the second-order cone, K-sublinear inequalities together with the original conic constraint are always sufficient ...

متن کامل

Minimal Valid Inequalities for Integer Constraints

In this paper we consider a semi-infinite relaxation of mixed integer linear programs. We show that minimal valid inequalities for this relaxation correspond to maximal latticefree convex sets, and that they arise from nonnegative, piecewise linear, positively homogeneous, convex functions.

متن کامل

Strong Dual for Conic Mixed-Integer Programs∗

Mixed-integer conic programming is a generalization of mixed-integer linear programming. In this paper, we present an extension of the duality theory for mixed-integer linear programming (see [4], [11]) to the case of mixed-integer conic programming. In particular, we construct a subadditive dual for mixed-integer conic programming problems. Under a simple condition on the primal problem, we ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Operations Research

سال: 2016

ISSN: 0364-765X,1526-5471

DOI: 10.1287/moor.2015.0737